Choose fontsize:
Witamy, Gość. Zaloguj się lub zarejestruj.
 
  W tej chwili nie ma nikogo na czacie
Strony: 1   Do dołu
  Drukuj  
Autor Wątek: Natura Wszechświata  (Przeczytany 8034 razy)
0 użytkowników i 1 Gość przegląda ten wątek.
Michał-Anioł
między niebem a piekłem
Moderator Globalny
Ekspert
*****
Płeć: Mężczyzna
Wiadomości: 1338


Nauka jest tworem mistycznym i irracjonalnym



Michał Anioł
Zobacz profil WWW
« : Październik 22, 2010, 22:45:50 »


 Mówiąc o wymiarze przestrzeni, myślimy o trzech wzajemnie prostopadłych wektorach, nie zważając na to, że fizyczność reperu trzech wektorów ma uzasadnienie jedynie w naszych warunkach ziemskich, gdzie Ziemia w swojej płaszczyźnie daje dwa z nich, a kierunek ciężaru trzeci. Jeśliby nam przyszło rozwinąć cywilizację w miejscu, gdzie brak grawitacji, skąd wzięłaby się w naszym umyśle prostopadłość? Niech to pytanie będzie sygnałem wątłości naszych przesłanek co do wyboru konwencji matematycznych, które są dalekie od uniwersalności. Mimo to wymiarem, opartym na pojęciu reperu wzajemnie prostopadłych wektorów, fizycy posługują się nie tylko w makroświecie, ale i w mikroświecie, o którym już Riemann pisał, że zapewne rządzi się inną geometrią.


1.

 

Platon

a) „Co do obrotów innych planet, ludzie ich nie znają, z wyjątkiem bardzo niewielu, i nie dają im nazw ani nie mierzą za pomocą obserwacji ich stosunków do Liczb. Toteż nic — żeby tak powiedzieć — nie wiedzą, że i ich obroty, których jest nieskończona ilość i zadziwiająca różnorodność, mierzą czas. Można mimo to zrozumieć, że doskonała liczba czasu wtedy wypełnia rok doskonały, gdy osiem obrotów po wyrównaniu swych szybkości powraca do punktu wyjścia — osiem obrotów mierzonych według orbity Tego Samego, które się porusza w sposób jednostajny”[236].

b) „Cały ten wszechświat raz sam Bóg prowadzi w biegu i sam go obraca, a raz go zostawia, kiedy jego obroty już osiągną miarę czasu jemu właściwego. Wtedy się wszechświat zaczyna sam kręcić w stronę przeciwną, bo on jest istotą żywą i dostał rozum od tego, który wprowadził weń harmonię na początku. (...) nie trzeba mówić, ani że świat się zawsze sam obraca, ani też że Bóg zawsze go obraca i w dwóch przeciwnych kręci go kierunkach, ani też że go kręcą jacyś dwaj bogowie, sobie nawzajem przeciwni, tylko (...) to jedno pozostaje, że raz go prowadzi przyczyna inna, boska, i on wtedy znowu nabiera życia i dostaje nieśmiertelność nabytą od swego wykonawcy, a raz, kiedy go Bóg opuści, on wtedy idzie sam przez się, jak długo jest zostawiony sam sobie. Tak, że z powrotem odbywa niezliczone obroty, bo jest czymś największym i najlepiej zrównoważonym, i biegnie, oparty na osi najcieńszej. (...) ruch obrotowy świata odbywa się raz w tym kierunku, co teraz, a raz w stronę przeciwną. (...). Tę przemianę trzeba uważać za największą ze wszystkich przemian, jakie się odbywają, i najbardziej zasadniczą we wszechświecie”[237].

 

 

2.5 Komentarz

 

 Czy istnieje potrzeba wprowadzania dziś modeli kosmologicznych z „pitagorejskim”, cyklicznym czasem? Aby odpowiedzieć na to pytanie prześledźmy najpierw pokrótce w jakim punkcie znajduje się obecnie kosmologia ze względu na moc eksplanacyjną dotychczasowych jej modeli i ich zdolnośc do tłumaczenia znanych w dniu dzisiejszym empirycznych zjawisk, mówiących o budowie Wszechświata jako całości. Otóż, jak wiadomo, z równań Ogólnej Teorii Względności wynikają — przy dodatkowym założeniu homogeniczności oraz izotropowości Wszechświata — trzy możliwe typy jego geometrii, które były tu schematycznie przedstawione na rysunku 5. Owe trzy typy geometrii Wszechświata powiązane są ściśle zarówno z problemem wieku Kosmosu, jak i sposobem jego ewolucji. Zależą one, jak również powszechnie wiadomo, od gęstości materii w universum Ω: dla gęstości mniejszej od tzw. Gęstości krytycznej Ω0 otrzymujemy wszechświat hiperboliczny, dla większej — sferyczny, dla gęstości krytycznej zaś [Ω = Ω0] — wszechświat płaski.

 Sferyczny model Wszechświata oznacza jego zamkniętość (w czasie oraz w przestrzeni). Natomiast modele płaski i hiperboliczny dają jako ich konsekwencję Wszechświat otwarty i być może nieskończony.

 

W każdym razie, potwierdzone przez Roukeme et al. wnioski Weeksa i Lumineta skłaniają do przyjęcia jako adekwatnego do rzeczywistości sferycznego modelu geometrii wszechświata. Tymczasem model ten uważało się dotąd raczej — w świetle obecnych obserwacji — za najmniej możliwy [wzgl. najmniej prawdopodobny]. Jak pisał o tym w 1998 roku A. Liddle: „Ci z nas, którym podoba się teoria inflacji, opowiadają się za modelem Wszechświata płaskiego. Niestety, coraz bardziej wygląda na to, że aby mogło to być prawdą, musimy raczej uwierzyć w istnienie stałej kosmologicznej, niż przyjąć, że Wszechświat ma po prostu gęstość krytyczną. Hiperboliczny (otwarty) model Wszechświata jest, oczywiście, nadal możliwy, natomiast Wszechświat o geometrii sferycznej (zamknięty) — bardzo mało prawdopodobny”[238].

Przeprowadzone od tego czasu obserwacje supernowych wskazują natomiast na coraz szybsze tempo rozszerzania się Kosmosu, a zatem wydawały się tym bardziej świadczyć przeciwko modelowi sferycznemu[239]. Wstępne bowiem wyniki obserwacji teleskopem Hubble’a supernowych z wysokim przesunięciem ku czerwieni zdawały się wskazywać na płaski — choć zarazem obecnie akcelerujący — model rozszerzającego się Wszechświata. Również dane ze stratosferycznej sondy balonowej BOOMERANG zdawały się sugerować poprawność płaskiego modelu Wszechświata. Najnowsze wyniki obserwacji mikrofalowego promieniowania tła sugerują tymczasem wartość gęstości materii Wszechświata w przedziale pomiędzy 1.00 a 1.04 gęstości krytycznej[240]. Uprawdopodobniało by to model sferyczny (lub ew. płaski). Istotnie — jak już pisaliśmy w A1 — najnowszy model Wszechświata opracowany przez zespół Jeffreya Weeksa i Jean-Pierre Lumineta w oparciu o wyniki promieniowania tła podane przez sondę WMAP posługuje się dodekahedralną przestrzenią Poincarégo, tzn. sytuuje się w każdym bądź razie w rodzinie modeli sferycznych.

 Dodekahedralny Wszechświat Lumineta i Weeksa jest podwójnie ikosahedralną rozmaitością różniczkową rzędu 120, której podstawową domeną jest dodekahedr[241]. Model ów bardzo dobrze zgadza się z wieloma danymi przesłanymi przez sondę WMAP, istnieje jednak również inna propozycja interpretacji owych danych, dopasowująca je do płaskiego Wszechświata[242]. Przedstawia ją zespół Davida Spergla z Princeton University: „However, in response to Weeks's report, Spergel and his colleagues have announced evidence that contradicts the findings. They showed previously that if the Universe does produce a hall-of-mirrors effect, it should be possible to find a pattern of matching circles in the microwave background around which the fluctuations are identical (New Scientist print edition, 19 September 1998, p 28). Weeks's theory predicts six specific pairs of matching circles in the sky, but Spergel's team has had no luck finding them in WMAP data. "Weeks's team has a very powerful model that's nice because it makes a very specific prediction about the pattern we should see on the sky," says Spergel. 'However, we've looked for it, and we don't see it' [243].

 Ostatnio wszakże polsko-francuski zespół naukowy w opracowanych przez siebie wynikach uzyskanych z sondy WMAP potwierdził model Weeksa i Lumineta, wyjaśniając zarazem negatywny wynik zespołu Spergela, jako spowodowany faktem, iż Wszechświat znajduje się dopiero na etapie wyewoluowania się pojedynczego [stanowiącego zatem obecnie prawie całą objętość universum] dodekahedru, przez co przewidywane w tym modelu teoretyczne zjawiska odbić w promieniowaniu tła są jeszcze b. słabe[244].

 Należałoby w tym miejscu podnieść również jednak fakt, iż nie tylko dodekahedralny, ale wszelkie modele sferyczne (z racji tego, iż sferyczny Wszechświat działać by musiał jak skupiająca soczewka) przewidują istnienie na niebie tzw. obrazów-widm (ghost images) takich obiektów jak np. galaktyki czy kwazary[245]. W sferycznym Wszechświecie powinny występować obrazy-widma wszelkich w zasadzie obiektów [ściśle rzecz biorąc efekt ten może wystąpić również — choć w mniejszym na ogół natężeniu — także w nie-sferycznym universum]. W zależności od szczegółowej topologii takiego universum owe ghost images mogłyby być b. liczne (nawet nieskończenie liczne) i mogłyby dawać tzw. efekt sali lustrzanej[246]. Mimo jednak podejmowanych już od przedwojny licznych prób[247], do tej pory takowych obrazów nie udało się (przynajmniej jednoznacznie) zaobserwować[248]. Być może wszakże ostatni wynik polsko-francuskiego zespołu tłumaczy również ten fakt.

 

 Mamy zatem obecnie w kosmologii do czynienia z “dramatycznym rozdarciem” pomiędzy dwoma konkurencyjnymi modelami (a raczej grupami modeli) wszechświata z jednej strony płaskiego, z drugiej zaś — sferycznego. Jak wyżej pokazaliśmy, istnieją silne argumenty obserwacyjne (włącznie z ‘dodekahedralnym’ materiałem zinterpretowanym tu po raz pierwszy przez nas) świadczące za każdą z tych opcji. Nie od rzeczy byłoby w takim razie przypuścić, iż może — wedle zasady, że ‘prawda leży pośrodku’ — obydwa owe modele są w jakimś stopniu adekwatne do fizycznej rzeczywistości. Istotnie, gdyby odrzucić klasyczną Kopernikańską Zasadę Kosmologiczną, tj. aprioryczne założenie o homogeniczności i izotropowości przestrzennej Wszechświata, moglibyśmy wprowadzić jako Jego model np. powierzchnię 4-wymiarowego toroidu rogowego, którego 3-wymiarową reprezentacją jest zwykły torus rogowy. Model taki byłby geometrycznie pośredni pomiędzy powierzchnią 4-wymiarowej hipersfery, reprezentującej sferyczną geometrię Kosmosu, a powierzchnią 4-wymiarowego torusa pierścieniowego, która jest przykładem jednego z najbardziej popularnych ostatnio modeli płaskich [por. rys.12].


 Rys. 12 Torus pierścieniowy (u góry) jako rzut czterowymiarowego toroidu płaskiej geometrii Wszechświata oraz torus rogowy (u dołu) — przykład możliwej „geometrii pośredniej” która globalnie przypominałaby geometrię sferyczną (180o < suma kątów w trójkącie < 540o), lokalnie zaś byłaby zbliżona do płaskiej geometrii pierścieniowego torusa.

 

 W naszym modelu ‘rogowym’ istnieje jeden punkt wyróżniony (środek torusa rogowego), który byłby tu modelem początkowego a zarazem końcowego punktu (propagacji) Wszechświata. Czas jest w tym wypadku cykliczny (wszechświat zamknięty), co dobrze zgadza się z naszymi ustaleniami nt. logicznie koniecznej natury czasu z poprzedniego paragrafu. W takim rogowym Wszechświecie nie będą występowały w zasadzie (poza punktem początku-końca) ghost images — także w promieniowaniu tła — co z kolei dobrze zgadza się z aktualnymi obserwacjami. Jednak taki Wszechświat — jako ‘globalnie sferyczny’ — ‘rozpinany’ byłby przez (przestrzenną) siatkę dodekahedralnych geodetyk, co znowu stoi w zgodzie do przedstawionych przez nas rozumowań i empirycznych danych.

 W modelu tym jedynym pełnym obrazem-widmem byłby obraz-widmo punktu początkowego (osobliwego). Punkt ten zatem sam by siebie podwajał [ogólniej: multyplikował] — i w ten sposób byłby źródłem czasu. Dopóki bowiem mamy do czynienia z jednym tylko punktem — jedną chwilą — nie może istnieć ruch. Istnieje wówczas tylko (statyczna) wieczność. Czas zaś jest ex definitione „podwajaniem się”, multyplikacją (punktów i chwil).

 Natomiast fakt, iż (cały) czas wszechświata musi być skończony jest logicznie konieczny. Rozważmy albowiem, co następuje. Weźmy dowolną miarę (tj. jednostkę) czasu. Niech to będzie — dla ustalenia uwagi — sekunda. Otóż sekunda jest (jedną) sześćdziesiątą częścią minuty, (jedną) 3600-tną częścią godziny etc. Ale, w wypadku istnienia czasu nieskończonego, sekunda byłaby 1/∞ — tj. [przy przejściu przez granice] dokładnie zerową! — częścią takiego czasu (czasu w ogóle, czasu jako takiego). Gdyby jednak sekunda była zerową (tj. żadną) częścią czasu w ogóle, to wówczas nie byłaby ona w ogóle częścią czasu. Nie będąc zaś w ogóle [żadną] częścią czasu nie mierzyłaby go przeto. Innymi więc słowy, gdyby czas był nieskończony, byłby on wówczas bezmierny — czyli byłby czasem bez miary, czasem pozbawionym miary. Nie można by było go przeto mierzyć. A skoro czas daje się jednak mierzyć, to musi być on przeto skończony, tj. określony (ograniczony kresem). Warto w tym miejscu odnotować, iż powyższe rozumowania występują rzecz jasna przeciwko faktycznemu (tj. realnemu) istnieniu wszelkich zbiorów nieskończonych, przeciw istnieniu to których (np. przeciw nieskończonej podzielności odcinka) występował już m.in. wielokrotnie cytowany tu przez nas G.W. Leibniz[249].

W powyższym modelu mamy więc do czynienia z czasem Wszechświata cyklicznym, zamkniętym — cały Wszechświat jest zaś periodyczny i pulsujący [także periodyczną jest zarazem wskutek tego przestrzeń, ale fakt ów jest również logicznie konieczny — przestrzeń musi być skończona i periodyczna z tych samych względów, z których te właśnie cechy posiadać winien czas]. Model czasu Wszechświata pulsującego [wzgl. periodycznego], czyli też cyklicznego pojawia się zresztą (również cyklicznie i periodycznie) od momentu stworzenia pierwszego tego rodzaju modelu przez R.C. Tolmana [por. rys. 13] co jakiś [nomen atque omen] czas w kosmologii. Może to świadczyć za tym, iż tego rodzaju intuicja czasu (i) Wszechświata jest (również w nauce) głęboko zakorzeniona[250].

 Rys. 13 Kosmologiczny model Tolmana [za: M. Heller, 1983]. Jak pisze M. Heller: „Tolman wraz ze swoim współpracownikiem Morganem Wardem wykazali, że jeżeli w modelu oscylującym zachodzą procesy nieodwracalne, to okres trwania poszczególnych cykli wydłuża się, a ich amplituda rośnie [...], w fazie rozszerzania się Wszechświata entropia wzrasta, w fazie kurczenia się maleje, ale w kolejnych maksimach ekspansji entropia jest coraz większa. W ten sposób Wszechświat może oscylować nieograniczenie. Jednakże problem przejścia przez osobliwości nadal pozostaje nierozwiązany. Tolman na wszelki wypadek na wykresie pozostawił luki, nie narysował, jak sobie te przejścia wyobraża” [op. cit., s. 112-113].

 

 Ponadto, przedstawiony tu przez nas model Wszechświata był zasadniczo już od samego początku logicznie konieczny, tj. koniecznie prawdziwy. To właśnie tak naprawdę nic innego, a jedynie powierzchnia 4-wymiarowego toroidu rogowego, może być poprawnym modelem, otrzymanym jako odpowiedź na pytanie o (czaso-)przestrzenny kształt Kosmosu. Jeżeli pytamy bowiem w jakim kształcie zamyka się Wszechświat w ogóle, to w odpowiedzi nie możemy — logicznie rzecz biorąc — wymienić żadnych szczegółów tegoż kształtu: to, co jest tylko w ogóle, nie jest w żadnym szczególe, nie może być niczym szczegółowym. Dlatego też najogólniej rozumianym kształtem Universum musiałby być kształt doskonale homogeniczny i izotropowy, co implikuje — jako odpowiedź na tak ogólne pytanie — kształt ‘idealnej’ [tyle, że 4-wymiarowej] Parmenidejskiej kuli[251] [scil. 3-wymiarowej powierzchni hipersfery]. Każda odpowiedź jest po prostu już logicznie zawarta w [poprawnie zadanym] pytaniu. Z zadania sobie tegoż pytania o najogólniej rozumiany charakter kształtu Wszechświata, wynika odpowiedź w postaci zasady kosmologicznej, głoszącej homogeniczność i izotropowość Kosmosu[252]. Problem polega wszak na tym, że kiedy pytamy o czasoprzestrzenne granice Universum, to zadajemy w istocie pytanie już nie o ten najbardziej ogólnie rozumiany kształt Wszechświata, ale pytamy o czasowe granice przestrzennych granic i — tym samym — wchodzimy już na poziom większej (choć dopiero pierwotnej, tj. minimalnej) szczegółowości.

 Weźmy zatem logicznie konieczny 2-wymiarowy model przestrzeni Wszechświata. Musi nim być — zgodnie ze wszystkim, co zostało przed chwilą powiedziane — koło. Jeżeli zadamy sobie teraz pytanie o czasowe granice tak rozumianego Universum (tj. czasowe granice universum rozpatrywanego na tym poziomie ogólności, bądź szczegółowości), to otrzymamy w odpowiedzi — sytuujący się gdzieś na tym kole (wyróżniony) punkt [rys. 14].

 Rys. 14 Gdy fizyczną przestrzeń Wszechświata przedstawimy w postaci (‘doskonałego’) okręgu, wówczas jej granica — czas — będzie, naniesionym na ów okrąg, punktem.

 

Tak, jak punkt jest bowiem granicą linii[253], tak i czas jest granicą, tj. zewnętrznym kształtem a. formą przestrzeni. Jest tak po pierwsze dlatego, gdyż forma przestrzeni jest tejże przestrzeni strukturą, a więc w tym wypadku [zadaną na owej przestrzeni] metryką. Metryka zaś — lub mówiąc po prostu odległość — zjawia się w przestrzeni dopiero wraz z czasem. Gdyby nie było czasu, pokonanie jakiejkolwiek odległości nie trwałoby nigdy dłużej niż chwilę, przez co odległości de facto nie istniałyby, przez co z kolei wszystkie punkty przestrzeni należałoby ze sobą utożsamić. W takim jednak wypadku przestrzeń — nie posiadając części (sprowadzałaby się bowiem do punktu)[254] — nie miałaby też i [wewnętrznej] budowy, struktury. W drugą stronę zresztą również i dystans przestrzenny implikuje swoim istnieniem czas. Czas albowiem — jako tożsamy z najogólniej rozumianym ruchem[255] — wymaga dystansu dla swego istnienia. Przeto więc dystans [przestrzenna odległość a. odległość w przestrzeni] i czas są to pojęcia równozakresowe. [Metryczny] dystans [czas] jest więc strukturą [kształtem, granicą] przestrzeni.

Po drugie — czas jako spirala jest tworem płaskim, 2-wymiarowym, przeto przystoi mu ograniczać 3-wymiarową przestrzeń[256].

Po trzecie przestrzeń fizyczna, która jest z jej definicji najprostszym dającym się dostrzec zmysłowo tworem[257], wymaga jako swej antytezy (granicy) tego, co jest jeszcze niewidzialne (nie dające się dostrzec zmysłowo) a taką jest właśnie rzeczą czas.

Należałoby tu tylko jeszcze zauważyć, iż czas — jako właśnie graniczna [tj. skrajna] forma przestrzeni, należy do tej przestrzeni, zawiera się w niej — nie może stanowić on przeto odrębnego, „czwartego” wymiaru.

W każdym razie, na owym jednowymiarowym, liniowym [w postaci okręgu] modelu przestrzeni trójwymiarowej, czas będzie więc punktem. Gdy uwzględniamy czas w przestrzeni — wyróżniamy na tej linii punkt. Jeśli chcemy zaś przejść do przestrzeni trójwymiarowej, zrealizować zatem model (spełnić go), musimy obrócić rzecz jasna cały model [ażeby stał się pełnym] wokół punktu-czasu najpierw w przestrzeni 3-, potem zaś 4-wymiarowej, otrzymując [kolejno] torus rogowy, oraz 4-wymiarowy rogowy hipertoroid. Wyróżniony albowiem na kole przestrzennym punkt czasu stanowi formę, tj. granicę owej przestrzeni. Żeby jednakże urzeczywistnić ów model, trzeba go zrealizować, tzn. spełnić. Spełnienie zaś czegoś jest (jego) obrotem, obróceniem, tj. także — odwróceniem [a więc — w tym wypadku — zamienieniem formy i treści; treść koła przestrzeni stać się musi a zatem formą otaczającą znajdującą się tym razem wewnątrz treść czasu-formy — i stąd się bierze charakter ww. obrotu].

Wówczas otrzymamy rzecz jasna model Wszechświata niehomogenicznego i anizotropowego, ale — jak już powyżej zaznaczono — taki to właśnie model jest logicznie konieczny[258], kiedy chcemy odpowiedzieć na pytanie o nie tylko przestrzenny, ale również przestrzenno-czasowy charakter kształtu Kosmosu. Kosmologia współczesna zaś udzielała — jak do tej pory — ‘właściwej odpowiedzi na niewłaściwe pytanie’. Było tak zaś dlatego, ponieważ współcześnie nie umiemy z zasady — w przeciwieństwie np. do starożytnych Greków — myśleć posługując się pojęciami synkrytycznymi[259] — pojęciami odnoszącym się do jakichś obiektów w ogóle, do rzeczy samych w sobie. Nie potrafimy obecnie już mówić po prostu o „czymś”, a jedynie o „czymś jakimś”, o rzeczy w danym jej aspekcie. Nic zatem dziwnego, że i dzisiejszym fizykom zlewa się pojęcie „kształtu Wszechświata w ogóle” z jego bardziej szczegółową egzemplifikacją — „kształtu Wszechświata w jego aspekcie ewolucyjnym, tj. dynamicznym, czyli więc czasowym”. I tak o ile „Wszechświat w ogóle” winien mieć (w pierwszym przybliżeniu) kształt Parmenidejskiej kuli, o tyle Wszechświat czasowy [universum obserwowane w czasie, a więc universum w pełni fizykalne] jest hipertorusem rogowym. Jak widzimy, to właśnie zresztą model torusa rogowego wyjaśnia nam [na razie przynajmniej jakościowo] wszystkie, pozornie jedynie sprzeczne, obserwacje dotyczące Wszechświata[260].

 Osobną kwestię stanowi tutaj problem szczegółowego statusu geometrycznego omawianego przez nas modelu Kosmosu. Jak wiadomo, funkcjonujące dziś w tej materii modele opierają swój formalizm na geometrii rozmaitości (różniczkowalnych). Jak zauważa jednak M. Heller: „Konieczność odejścia od rozmaitościowego modelu czasoprzestrzeni może ujawnić się w obszarze kwantowania grawitacji. Istnieją silne racje przemawiające za tym, że skwantowanie pola grawitacyjnego — przede wszystkim na bardzo wczesnych etapach ewolucji Wszechświata, w pobliżu tzw. początkowej osobliwości — jest nie dającą się uniknąć koniecznością. Choć znane są i inne propozycje, wysoce prawdopodobnym wydaje się, że przy tego rodzaju zabiegu trzeba odstąpić od rozmaitościowej struktury czasoprzestrzeni. Zacytujmy na przykład opinię Trautmana: ‘Topologiczne i różniczkowe struktury czasoprzestrzeni nie wydają się posiadać dobrze określonego operacyjnego znaczenia. Dlatego też jest prawdopodobnym, że zostaną one porzucone, lub raczej zastąpione, przez jakąś inną strukturę, która byłaby ściślej związana z fizycznymi zjawiskami i ściślej przez nie wyznaczana niż absolutna, lokalnie euklidesowa struktura czasoprzestrzeni, zakładana we wszystkich obecnych teoriach. Według mojej opinii, zadowalająca kwantowa teoria przestrzeni, czasu i grawitacji będzie musiała odrzucić pojęcie rozmaitości różniczkowej jako modelu czasoprzestrzeni’ [...]”[261].

 Strukturą, będąca ‘ściślej związaną z fizycznymi zjawiskami’ mogłaby być [jak wynika już z naszych dotychczasowych rozważań] przestrzeń rozpinana przez [zawarty w niej] 2-wymiarowy, spiralny czas, naniesiony na ‘złotą’, logarytmiczną spiralę, której każdy pełny obrót kreowałby kolejne — propagujące w postępie właśnie złotym — płaskie pentagonalne figury (pentagon, siatka dodekahedru etc.) [por. rys. 6]. Rzut spirali czasu na oś jednowymiarową dawałby czas liniowy skwantowany. Przybliżyłoby to w istotny sposób ‘unifikację’ czasu w dzisiejszej fizyce, która dysponuje póki co jedynie partykularnymi pojęciami czasu: termodynamicznym, ‘grawitacyjnym’, kwantowym etc. Szczegółowy formalizm takiej struktury wymagałby dopiero opracowania. Jak zauważa wszelako É. Klein: „Każda z koncepcji fizycznych nadaje czasowi status oryginalny i szczególny. W rezultacie czas prezentuje zagadkowe oblicze sfinksa, jego istota zaś pozostaje mglista, nieokreślona i raczej niespójna. Nie istnieje uniwersalna koncepcja czasu, nie ma wokół tego pojęcia teoretycznej zgodności. [...]. Czy jedność czasu pojawiłaby się, gdyby teoretycy zdołali zunifikować cztery oddziaływania uznawane przez współczesną fizykę za podstawowe? A może wręcz przeciwnie, brakuje im właśnie tej jednolitej wizji czasu, aby posunąć do przodu sprawę unifikacji? Niewykluczone, że różne czasy [...] posiadają jednak dobrze ukryte ‘twarde jądro’ wspólnych własności. Wykazanie istnienia ‘zgodności czasów’ w fizyce wprowadzałoby porządek tam, gdzie go bardzo brakuje, a ponadto rzuciłoby nowe światło na pewne nadal aktualne problemy podstawowe, jakie nastręcza na przykład interpretacja fizyki kwantowej. Z pytań dotyczących natury czasu mogłyby się więc narodzić fundamentalne teorie jutra”[262].


 Rys. 15 Trudne do wizualizacji przedstawienie modelu Wszechświata w postaci 4-wymiarowego hipertoroidu rogowego, z czasem jako jego osią symetrii. Nowego znaczenia nabiera tu znane [zwłaszcza wśród ziemskich biznesmenów] powiedzenie, że wszystko w świecie kręci się wokół czasu.
Czas waha się tu cyklicznie w przedziale [-a, a], zaś dla  r = a otrzymujemy punkty osobliwe (ewolucji) Wszechświata. Od razu widać, iż w tym modelu każde przemieszczenie [translacja] w przestrzeni jest zarazem podróżą w czasie i vice versa. Kiedy sięgamy w głąb przestrzeni, sięgamy w głąb czasu — co jest zresztą dość oczywiste — natomiast (jak już wcześniej zauważaliśmy) istnienie odległości przestrzennej jest conditio sine qua non istnienia zjawisk czasowych. Poza tym Wszechświat w tym modelu 'ekspanduje' — jak również widać — w tempie niejednostajnym i posiada 'momenty' osobliwe, co może implikować niejednospójną topologię. Model ów wymaga teraz ilościowego sprawdzenia.


 

Rys. 16 Niejednospójna topologia Wszechświata jest wynikiem, logicznie rzecz biorąc, z jednej strony zamkniętości, czyli też pełni universum, z drugiej zaś może być związana z przedstawionym powyżej zarysem cyklicznego modelu czasoprzestrzeni, w którym czas jest okresowy i stanowi 'centrum' Kosmosu.

 

Konsekwencje adekwatności tegoż modelu byłyby m.in. następujące. Otóż, jak wiadomo, trajektorie w przestrzeni fazowej systemu hamiltonowskiego, mającego n stopni swobody i posiadającego n całek ruchu, leżą na n-wymiarowej rozmaitości, która jest topologicznie równoważna n-torusowi[267] [por. rys. 17]. Zatem Wszechświat w ogóle, Wszechświat jako całość byłby adekwatnie opisywalny 'pełnym' torusem rogowym, zaś poszczególne części ten Wszechświat składające — w ogólności 'niepełnymi', wielowymiarowymi torusami (pierścieniowymi). To doskonała ilustracja prawdy głoszącej, że całość jest czymś pełnym, to co ogólne jest czymś prostym, a poszczególne składniki tegoż ogółu — niepełne i skomplikowane.



 

Rys. 17 Orbity ciał materialnych opisywanych w systemie hamiltonowskim (np. orbity planet) sytuują się na torusach fazowych (np. w przestrzeni zmiennych 'działanie-kąt').

 

Warto tutaj w każdym razie jeszcze zaznaczyć, iż powiedzieliśmy powyżej również coś nt. natury punktu początkowego — tj. wg np. OTW osobliwego punktu[268] — Wszechświata. Nie zmienia to faktu, że posiadane dziś przez nas narzędzia teoretyczne nie są w stanie dosięgnąć opisu tego punktu, jednak — jak widać — nawet już prosta logika i rozum [a więc 'narzędzia' doskonale znane już Filolaosowi] są zdolne wykroczyć — przynajmniej w sensie jakościowym — poza najbardziej nawet dopracowane naukowe teorie


Jak pokazaliśmy do tej pory, nauka Filolaosa, niczym czerwona nić, przewija się w toku dziejów astronomii i kosmologii. Nazwisko pitagorejczyka, bądź jego uczniów Archytasa oraz Platona, pojawia się nader często tam, gdzie dokonane zostaje jakieś przełomowe — i zdawałoby się całkiem nowatorskie — odkrycie, dotyczące budowy oraz struktury Kosmosu, uświadamiając nam, że nie do końca jest ono naprawdę nowatorskie. Co prawda usiłuje się dziś przedstawiać często poglądy antycznych uczonych jako archaiczne, a nawet logicznie niespójnie, pogląd taki jednak — jak już wyżej pokazaliśmy — sam jest logicznie niespójny; toteż należałoby go uznać już za archaiczny.

Zapewne także „nie ma wątpliwości”, iż czysto dedukcyjny system pitagorejsko-platoński, wyprowadzający swe tezy z najbardziej ogólnych (synoptycznych), pierwotnych zasad (a. zasady) jest — logicznie rzecz biorąc — bardzo bliski już na samym swym początku Teorii Wszystkiego, bądź wręcz stanowić musi egzemplifikację takiej teorii. W dzisiejszej fizyce rozumuje się zazwyczaj przez indukcję i uogólnianie — „od szczegółów do ogółu”[280] — zatem najbardziej ogólna teoria — Teoria Wszystkiego — jest w tym modelu myślenia dopiero finalnym, nieosiągalnym prawie punktem dojścia
Pitagorejskie twierdzenie, że ‘wszystko jest liczbą’ może być prawidłowo uzasadnialne logicznie. Liczba (naturalna) jest bowiem jednością wielości (jedną wielością). Tymczasem wszystko, co nie jest wielością — jest jednością. To zaś, co nie jest wielością — musi być jednością. Zatem nie może istnieć nic, co nie byłoby ani wielością, ani jednością. Zarazem każda rzecz jest jedną i tą samą rzeczą [zasada tożsamości].
Przejdźmy teraz z kolei do bytów „ponadprzestrzennych”. Dość oczywistym jest, iż tak, jak ciało geometryczne możemy określić za pomocą 3 współrzędnych (długość, szerokość, wysokość), tak „ciało o własnościach fizycznych” („posiadające barwę”, czyli pewnie po prostu jakąś konsystencję, a. ogólniej — stan skupienia) da się opisać za pomocą tych trzech oraz jeszcze jednej współrzędnej, oznaczającej masę. Innymi słowy każdy punkt bryły geometrycznej, jako obcięcia 3-wymiarowej przestrzeni, jest całkowicie określony trzema liczbami, zaś każdy odnośny punkt jako część ciała fizycznego — czterema liczbami, z których czwarta oznacza masę skupioną w danej, infinitezymalnej części 3-wymiarowego kształtu ciała. Tak samo zatem, jak ciało geometryczne mogliśmy potraktować jako swego rodzaju ciąg (a. continuum) płaszczyzn, tak i ciało fizyczne (masywne) możemy potraktować jako ciąg (a. continuum) geometrycznych brył, lub też jako geometryczną bryłę, której przypiszemy jeszcze w każdym jej punkcie czwartą współrzędną — masę.

 Podstawą naszego poznania jest ujęcie, tzn. objęcie rzeczy(-wistości), czyli forma (to, co ogranicza)[333]. Możemy ten aspekt Wszechświata nazwać także jego (zewnętrznym) obliczem (physis). Zajmować się nim powinna (szeroko rozumiana) fizyka, jako nauka nie tylko o materialnym aspekcie świata, ale o wszystkich aspektach formalnych tegoż świata.
Łatwo jest pokazać, że pitagorejsko-platoński paradygmat nauki — taki, jakim go w nin. pracy zrekonstruowaliśmy — prowadzi wprost i natychmiast do skonstruowania (czy też może raczej: odkrycia) wciąż nieosiągalnego w dzisiejszej fizyce szczytu i zwieńczenia tejże fizyki, jakim byłaby dla niej bądź tzw. jednolita teoria pola, tj. „ogólna teoria, która powiązałaby oddziaływania elektromagnetyczne, grawitacyjne, silne i słabe jednym układem równań”[335], bądź także tzw. teoria wszystkiego, tj. „teoria, która podaje jednolity opis wszystkich znanych typów cząstek elementarnych, wszystkich znanych rodzajów sił we Wszechświecie oraz ewolucji Wszechświata”


 Zakończenie

 

I tak oto doszliśmy do końca naszych rozważań. Dotyczyły one w istocie zagadnienia mitu liniowego postępu nauki. Jak okazało się powyżej, pomimo iż mit ten (jak zresztą na ogół wszystkie mity) ma szeroki zakres i dużą siłę oddziaływania, jest jednak z punktu widzenia faktów nazbyt dosłownie interpretowany i przyjmowany. Niewątpliwie tkwią w nim ziarna prawdy w tym sensie, że nauka nowożytna dokonuje bezustannego ilościowego postępu wiedzy. Ale twierdzenie, że istnieje dziś również stały postęp w metodzie myślenia, w dokonywaniu wglądu w rzeczywistość i w metodologicznej analizie odkrywanych naukowych teorii budzi już znaczną wątpliwość.

Posługując się metodami ścisłego (choć zarazem bardzo abstrakcyjnego) logicznego myślenia, jakie były już znane starożytnym, możemy nie tylko zrozumieć głeboko sens odkrywanych dziś przez nas w fizyce i astronomii empirycznych faktów i uzyskać w nie wgląd; możemy również przewidywać nowe, przyszłe odkrycia (jak odkrycie, nie powstałej jeszcze do dzisiaj, Ogólnej Teorii Pola).

Konkluzje te mogą nas niepokoić. Są one bowiem obligatoryjne. Przyjąwszy je jako prawdę, nie możemy nie starać się zmienić podejścia do odkrywania Prawdy naukowej. W szczególności nie możemy w takim razie zatrzymywać się na zdroworozsądkowym etapie poznania rzeczywistości i twierdzić nadal, że jest to etap najwyższy. Świadomość, że poza metodą nauk empirycznych istnieje jeszcze coś więcej jest z pewnością bardzo niewygodna, zmusza do najwyższych umysłowych oraz duchowych wysiłków. Dlatego też naukowcy przez setki lat — poczynając od ówczesnych krytyków Kopernika, Galileusza i Newtona (a nawet jeszcze wcześniej) bronili się przed tą świadomością i będą ją z całą pewnością dalej odrzucać.

http://www.gnosis.art.pl/e_gnosis/aurea_catena_gnosis/zawisza_czerwona_nic/zawisza_czerwona_nic06.htm

Share this topic on FacebookShare this topic on GoogleShare this topic on MagnoliaShare this topic on TwitterShare this topic on Google buzz 

« Ostatnia zmiana: Grudzień 12, 2010, 13:54:45 wysłane przez Michał-Anioł » Zapisane

Wierzę w sens eksploracji i poznawania życia, kolekcjonowania wrażeń, wiedzy i doświadczeń. Tylko otwarty i swobodny umysł jest w stanie zrozumieć świat!

www.imaginarium.org.pl
Michał-Anioł
między niebem a piekłem
Moderator Globalny
Ekspert
*****
Płeć: Mężczyzna
Wiadomości: 1338


Nauka jest tworem mistycznym i irracjonalnym



Michał Anioł
Zobacz profil WWW
« Odpowiedz #1 : Listopad 17, 2010, 01:35:42 »




Obiekt płaski i zarazem sferyczny
 Oczko

Share this topic on FacebookShare this topic on GoogleShare this topic on MagnoliaShare this topic on TwitterShare this topic on Google buzz 

« Ostatnia zmiana: Listopad 17, 2010, 01:40:20 wysłane przez Michał-Anioł » Zapisane

Wierzę w sens eksploracji i poznawania życia, kolekcjonowania wrażeń, wiedzy i doświadczeń. Tylko otwarty i swobodny umysł jest w stanie zrozumieć świat!

www.imaginarium.org.pl
Strony: 1   Do góry
  Drukuj  
 
Skocz do:  

Powered by SMF 1.1.21 | SMF © 2006-2009, Simple Machines
BlueSkies design by Bloc | XHTML | CSS